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ABSTRACT

The research described in this thesis consists of an
application of the hierarchical distribution function for-
malism to the cosmogonical problem of the development of

irregularities in an expanding universe.

The cosmological setting of the work to follow is
first presented in a brief resumé of certain aspects of
Layzer's hypothesis of gravitational clustering. Next, the
equations of motion of a cosmic.distribution of mutually
gravitating point masses are obtained in a particularly
convenient set of position, velocity, and time coordinates,
In these coordinates the gross expansion of the universe is
transformed away and in its place an apparent background of
negative mass and an explicit time dependence of the gravie

tational constant appear,

The formalism of distribution and correlation funce
tions 1s then developed with emphasis placed upon the gen-
erating functional of Bogolioubov, The generating functional
method is employed in a new derivation of the equations of
motion for the correlation functions. Layzer's clustering
spectrum 1s redefined in terms of the two-particle correla-

tion function to obtain a quantity more appropriate to a
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particulate distribution.

Various models of clustering are next studied and the
simplicity of the correlation functions as opposed to the
dlstribution functions exhibited. The clustering spectrum
for a three-level hierarchical distribution of mass points
1s explicitly calculated with the aid of the generating
functional. It is found that pronounced clustering on a
distance scale A does not necessarily imply a peak in the
clustering spectrum at k~1/2 as one might intuitively
expect,

The dynamics of clustering are then investigated and
the energy theorem for the peculiar kinetic and potential
onerzies derived, The simplification resulting from the
assumption of weak clustering 1s exploited in the derivation
of a useful integral equation for the clustering spectrum,
This integral equation is numerically solved under the
assumption of certain simple initial conditions. As expected,
it 1s found that clustering on a distance scale much smaller
than Jeans' critical wavelength is overcome by Landau damp-
ing or phase mixing but that clustering on a much larger

scale proceeds to grow,
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CHAPTER I
INTRODUCTION

The work to be described in this thesis was moti-
vated by certain cosmological speculations of D. Layzer. It
represents an effort to provide a suitable mathematical
framework for the examination and extension of these ideas,
It is therefore appropriate to briefly outline the relevant
hypotheses in order to make clear the cosmological setting

of the work to follow,

I. THE COSMOLOGICAL SETTING

Most modern cosmogonical theorles are based upon the
assumption that more or less structureless, perhaps turbu-
lent, clouds of dust and gas can condense or fragment to
form stars and planets. Layzer (1) has investigated this
process of fragmentation and has concluded that it cannot
occur under circumstances likely to be realized in nature,
To circumvent this difficulty Layzer (2) had earlier
advanced the hypothesis of gravitational clustering. He
stated the hypothesis as followss

Consider a cosmic distribution of matter in which

there are slight local irregularities. As the universe
expands the irregularities become more and more pro-
nounced until finally self-gravitating systems separate
out. The newly formed systems play the role of particles

in a new cosmic distribution, which will also have
slight local irregularities, in general, and the stage



is set for a repetition of the clustering process.
Specifically, the planets and stars are assumed to form
near the beginning of the expansion by gravitational
clustering of gas and dust, Then nultiple stellar
systems, star clusters, and galaxles are assumed to form
in a cosmic distribution of stars. And finally multiple
galactic systems, groups of galaxies, and great clusters
of galaxies are assumed to form by gravitational
clustering in a cosmic distribution of galaxies.,

Layzer recognizes that at each stage of the cluster-
ing process there must exist some organization at all levels
of astronomical size. For example, even as stars and planets
are belng formed there must already be incipient clustering
on the galactic and multi-galactic levels. The principal
hypothesis is that significant small-scale clustering

precedes significant large scale clustering.

In order to provide a measure of the degree of
clustering associated with systems of each characteristic
size Layzer introduces the clustering spectrum, the three-
dimensional Fourier transform of the autocorrelation
function of the peculiar part of the cosmic mass distribution.
Let the mass density of the cosmic distribution be divided
into a part independent of position and a part of vanishing
space average,

PR)= 9 4+ P (1)
where
(FX))=o0 (2)
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The cosmological principle is assumed to hold and therefore

the distribution is, on some sufficiently large scale, sta-
istically homogeneous and isotropic. This implies

<§‘7*§')5"7'3>?‘—i:,,a FReRNFE NI 2
. 3
=<5 5

where f(x), the autocorrelation function, depends on the
magnitude of X only. Note that the 1limit 1s assumed to be
independent of the location of the volume Y ,

Consider the gravitational energy per unit mass
possessed by this cosmic distribution, It 1is convenient to
think of it as the 1imit of the specific potential energy of
a finite distribution as the size of the distribution tends
toward infinity.

L v . =& (o (_9+J<"313 + 3(x1))
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The 1imit of the first term does not exist, but as
this term is independent of the clustering we may regard it
as an uninteresting although infinite constant. In the
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second and third terms make the change of variables X-- X+X',
and let the x integration extend over all space, We then

find

FP tx- x }
- . _'_ 2 (xalh
= C,Sax-; ‘\....“—S" 3(&41) (5
et ® ]
And similarly,
4G S o= SR Fan
e dx \d¥'
- Tea ) e S
Qw29 A g Ix- 1
- =S AN '—S~"‘~‘c J"r
= 55“ X wim o) (x+x )3 (x')dx (6)
- *?
= c.<:§ Sir(x)i- ax
2 9 X

Thus, the contribution of the density fluctuations to the
specific potential energy may be written

U= §38 55 [T552) @

It 1s assumed that f(x) decreases sufficiently
rapidly at large distances so that the integral converges.,
Let us express this integral in terms of the Fourler trans-

form of f(x).

3 -
5())=S€2" ¥ gz (8)



Using the well known Fourier transform of 1/x,

I ani R8P ) =
B SR

and Parseval's theorem in the form,
Satryacnrad = §3@Hra¢4)2 (10)
we obtain finally the following result,
U. = ’;C{,-fiz CSaze S

(11)
- 263D 5‘,3;3)43
S

.g?k), the clustering spectrum, thus describes the
distribution of peculiar potential energy iIn wave number
space, Layzer interprets nS?k) as indicating the degree of
clustering associated with systems of characteristic size
1/k. For that reason the clustering spectrum assumes a
central role in hls cosmology. He assumes that for a dis-
tribution chéracterized by clustering on some well defined
scale, say L, <3(k) will exhibit a peak in the neighbor-
hood of k=1/L. The actual situation will become somewhat
clearer when the spectrum function is actually calculated

for certain specific distributions in chapter 1V,

When one observes the distribution of matter in

astronomical systems throughout the visible universe one
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notices an approximately hierarchical organization. That 1s,
astronomical systems do not occur with equal frequency in
all sizes, but rather they seem more or less concentrated
at certain levels--stars, stellar clusters, galaxles etc,

To be sure, this hierarchical organization is not at all
precise, but it does seem to exist. In Layzer's terms the
clustering spectrum appears to exhibit peaks. Since it seems
unlikely that a well defined hierarchical organization
existed very early in the expansion, the development of

this organization is one of the outstanding features to

be accounted for by any successful cosmology. Layzer con-
Jectures that the spectrum function is unstable in the sense
that small positive perturbations in the initial spectrum
tend to grow at the expense of negative fluctuations. A
qualitative argument in support of this conjecture proceeds

as follows.

Imagine a sharply hierarchical cosmic distribution
of matter. Let the lowest level consist of pre-stars,
relatively compact masses of dust and gas in the process of
Kelvin contraction., In this process gravitational energy 1s
converted into heat and is then radiated away. One may view
this radiation as either an outflow of positive energy or

alternatively as an inflow of binding energy. Now by the
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assumption of a hierarchical organization the pre-stars are
grouped 1n clusters, the clusters in superclusters, and so
on. Inelastic collisions between pre-stars will tend to
transfer orbital kinetic energy of the pre-stars into
thermal energy which will then be radiated away. The clusters
will thus tend to become increésingly compact. In other
terms, the inflow of binding energy into the pre-stars
represented by their radiation is fed in turn into the
clusters., In a similar way collisions between clusters
result in a flow of binding energy from the clusters to the
superclusters. One thus obtains a picture of binding energy

cascading from small-scale levels to large-scale levels,

Imagine now that some level, the cluster level for
example, is particularly well developed. In that case the
clusters will be unusually compact and collisions between
pre-stars will be frequent. There will consequently be a
high rate of binding energy inflow into the cluster level.
On the other hand collisions between clusters will be
infrequent and the clusters themselves will be relatively
resistant to disruption during these encounters. Thus, there
will be a low rate of binding energy outflow from the
cluster level to the supercluster level. The net result is
that organization on the cluster level will become even more

1htense at the expense of organization on the pre-star and



supercluster levels,

Layzer likens this flow of binding energy to the
cascading of sand through a vertical series of funnels,
each funnel representing a level of the clustering hier-
archy. In this analog the outflov from an overly full
funnel tends to diminish because of increased friction

between the grains of sand,

Although this argument has been predicated upon a
distribution which is already sharply hierarchical, its
conclusion , that intense clustering levels tend to develop
at the expense of less intensly developed levels, may
presumably apply to distributions in which there is only a
tendency toward hierarchical organization. If that is the
case the spectrum function is unstable in the sense

mentioned,

One feature of the purely gravitational analysis to
follow 1s the absence of any characteristic linear dimension.
From this 1tlfollows that the actual occurence of character=
istic clustering scales cannot be determined by the gravi-
tational dynamics alone but rather by the initial conditions,.

The present work is therefore necessarily incomplete and 1is

intended to complement an investigation of the non-gravita-
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tional processes which govern the development of irregular-

ities early in the course of the expansion.

The analysis presented in thesis is limited also
in asnother way. As will be shown in chapter V, the transfer
of binding energy from one clustering level to another 1s
essentially a non-linear phenomenon. However, because of the
great complexity of a suitable non-linear treatment the
analysis presented here 1s limited to the linearized approx-

imation,

This thesis then does not represent in any sense a
complete solution of the clustering problem but it is hoped
that it 1s a step in that direction.



CHAPTER I1I
THE EQUATIONS OF MOTION

The research to be described in this thesis has been
directed at understanding the purely gravitational aspects
of cosmic clustering. Thus, only gravitational forces are to
be treated and such phenomena as thermal radiation are to be
ignored. As a consequence, the details of clustering on the
pre-stellar scale will be lnaccurate as soon as the pre-
stars become dense enough for non-gravitational forces and
radiation to become important. It is expected however that
the general structure of clustering at large characteristie
distances and the details of the flow of peculiar binding
energy from one clustering level to another should be con-

tained in this purely gravitational treatment,

I. THE COSMIC DISTRIBUTION

At this point it is necessary to choose a particular
representation of the distribution of matter. The two most
reasonable representations are a distribution of point
particles and a contimuous distribution of mass density.
Although these two representations appear very different
they become much less so when the problem is treated in
statistical terms. In that case the probability of finding a
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particle at some point in the particulate view behaves very

much like the average mass density in the continuous view,
The only difference between the two representations arises
from the effects of close encounters between particles,
essentially relaxation phenomena. One may say that when
statistically treated the particulate representation
approaches the continuous representation as the average
particle mass approaches zero and the number density of
particles approaches infinity in such a way as to keep thelr
product constant. We will call this the continuum limit. In
this sense the particulate representation is the more gen-
eral of the two since it contains the continuum representa=

tion as a limit,

If one intends to use the particulate description
only as an intermediate step and to always take the con-
tinuum limit the two views are precisely equivalent. The
particulate view is still to be preferred however because 1t
corresponds more closely to the situations considered in the
standard treatments of non-equilibrium statistical mechanics.
These results may then be applied with very little modifi-

cation to the present problem,

We therefore choose to represent the cosmic distri-

bution as a uniformly expanding, statistically homogeneous
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and isotropic distributlon of mutually gravitating point
particles. As we shall later see the continuum limit 1is
adequate for the description of clustering at large dis-
tances, the only region in which the purely gravitational
theory 1s valid in any case. It will therefore be unneces~
sary to identify the particles of the distribution with
specific physical entities such as molecules or stars. In
the final results no reference to the nature of the parti-
cles will appear, We may in fact make the assumption that
the particles are all of equal mass when the resultant

simplification becomes sufficiently profitable.
IT, THE CO-MOVING COORDINATE SYSTEM

Consider now the equations of motion of the point
particles., Let ij and My be the position vector and mass
respectively of the jth particle. Let G denote the gravita-

tional constant. The Newtonian equations of motion are then

i:gd .-_.z M GM (
S = =8 12
d 4 R4 * lxé’xn\s )

Equation (12) is valid of course only in an inertial
coordinate system. In such a system the universe 1s, on the
average, in a state of uniform expansion. Since in an
expanding universe one and only one point may be at rest

with respect to any inertial frame all regions of the
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universe are not equivalently treated, It will be convenient
to introduce a new set of coordinates which expand with the

mean motion of the universe, In this system all points will

be on an equal footing.

Let igt) be the inertial coordinates of a represent-
ative point of the smoothed out or averaged distribution.
This distribution is uniformly expanding and so one may
choose an inertial freme whose origin is at rest with
respect to the local matter. In that case one has the follow-
ing relation.

X2+ X (e R(4) (13)

R(t) is called the expansion parameter and is defined to be
equal to unity at time t,, the time at which initial condi-

tions are to be imposed.

We shall now define a new set of particle coordinates

by the relation
X5 = Y; R (24)

If the ?3 are held constant the Xj simply follow the univer-
sal expansion. The 53 are thus co-moving coordinates. Let
us also introduce a new time-like variable s defined by the
following differential equation and initial condition,
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dsS |
it ° R/ (15a)
and
5(4.) = O (15b)

Substituting these new variables into equation (12) one

obtains the transformed equation of motion.

&Y H(Y )
=-R62, st Belra- Yo s Rf‘i = I (16)

1 3
J St ey Y5~ Yol

In order to simplify the second term on the right hand side

one must consider the time dependence of R,

Newtonian gravitational theory cannot deal consist-
ently with infinite, homogeneous distributions of matter. One
must therefore appeal to general relativity to provide a
specification of R(t). The appropriate solutions of the
field equations are the Einstein-Friedmann solutions, given
for example by Landau and Lifshitz (3).

Consider the solution corresponding to a pressure-
free or dustlike distribution of matter., Let D be the dis~-
tance between two particular dust grains. If this distance
is small compared to the average gravitational radius of
curvature of the universe it is a consequence of the

Einstein-Friedmann solutions that D obeys the equation
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A\

e = T3-DG #F a”

This 1s precisely the result obtainable from the Newtonian
theory by considering the distribution of dust to be finite
and spherical in shape., Nelther the radius of the sphere nor
the location of its center matters. It is merely necessary
that the two dust particles under consideration lie within
it. We see then that Newtonian theory 1s applicable to an
infinite distribution 1f the distribution is regarded as the
limit of concentric spherical distributions of equal mass
density as their radii tend to infinity.

It has been shown by Irvine (&) that in a universe
in which the irregularities are characterized by a scale
length small compared with the average gravitational radius
of curvature, and in which the fluctuating part of the
velocity fileld is small compared with the speed of light,
Newtonian gra?itation provides an accurate description of
the development of the irregularities, Relativity need be
invoked only to specify the correct limiting proceedures
for the interpretation of such quantities as the average
force on some particle due to all other particles, quan-

tities which are otherwise not well defined,

Returning for the moment to the inertial coordinate
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system and ordinary time, let X(t) be the inertial coordi-
nates of a point co-moving with the average local distri-
bution of matter. Since the infinite universe may be thought
of as a 1limit of spherical distributions of matter, each
concentric with the origin, and each of the same average

density, the equation of motion for X(t) is simply

SR -aT 3 s Xc4)
VO X(AISK®) 6 L) (18)

where P(t) is the average density at time t. Substituting
equation (13) we find

a R ATV -
= — 2\ (%
e 3 G R(*) Sy (19)

Now from mass conservation we may conclude

R W= S(+) (20)

Returning to the variable s and substituting equation (20)
into equation (19) we obtain

4 1 JdR _ _aw CITE
35 @ T =" 3 @ 306e0) (21)

Substituting this result into equation (16) we finally
obtain

1 - —ry

d Y (Ye -Y,) 4T = >

=2 = _R6 M, —A—2 RG — S(o) Yy

T g;_‘,o_ Civsov 8 + 3 S Y, (22)

The first term on the right hand side of this equa-
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tion 1s of the form of a sum of Newtonian forces with the
peculiar difference that the gravitational constant 1is
multiplied by the expansion parameter R. We may consider the
combination R(s)G to be a new gravitational constant which
is now an explicit function of the time.

To interpret the second term note that if RG is
considered to be the new gravitational constant this term is
of the form of the gravitational field interior to a uniform
sphere of density ~P(0) centered about the origin. Again
considering the universe to be the 1imit of such spheres
we see that this second term represents a negative back-
ground force due to a distribution of negative mass equal in
magnitude of density to the average density of real mass at
time t,. But in the co-moving system the density of real
mass is constant. Thus the negative background mass compen=
sates for the average distribution of real mass indefinitely.
This is of course perfectly reasonable. In the co-moving
frame we have transformed away the decelerating expansion,
Yet the first term on the right hand side of equation (22)
is of the same form as the original force. Therefore we
must have introduced a negative background to cancel the net

attraction of the gravitating particles.

Before leaving this chapter it will be useful to
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investigate the behavior of the expansion parameter as a
function of s. To do this we integrate equation (21) twice.
The first integratlon ylelds

| dR _ _amw °
RT 45 3 GS@s+C (23)
The second integration yields
| Qv 5 st
—--—R—z——TC’S(O.)—E— + C.5 + C, (2%)

Since we require that R(0)=1 it follows that c,=-1.
The combination 4wGP(0) appears repeatedly in the develop-
ment to follow, It is therefore convenient to adopt the

notation

— U
4T O)G = WE=4TTnNnMmG /m (25)

This combination of constants plays a role in the gravita-
tional problem analogous to that of the square of the plasma
frequency in the theory of plasma waves, This latter quantity
is given by

2 2
4mne /m = W, (26)

where n is the number density of electrons and e and m are
the electronic charge and mass respectively, It 1s useful
also to express ¢j in terms of a ratio of immediate physical

significance,
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At the initial time t, select some member of the
sequence of spherical distributions whose limit is to be
taken as the infinite universe. Suppose the radius of that
distribution to be a. The distribution has kinetic energy
of expansion T as well as gravitational energy V. These
quantities are easily found to be

T= S“fi‘_’l (x2% :.,Ze am x'dx
Fo (dR) ¥ anvtux
o (27)

=
-———3;"’ ¢t atr x*ax

\/ﬂo\/\

<

5
2T S(o) c\ %

I

and R
S%‘\TX S(O)G- aT X S(o) AX
[-)
}

cne = ¢ o’ (28)
3 3 G5

Let X be the ratio of the total energy to the gravitational

- =

energye.

TV

vV

2
Il

acy
T gn3oG (29)

—

act
2wt

i

‘

Note that « 1is independent of the radius a. The constant
Cq may now be expressed in terms of & o



c.= WA =D (30)

Combining equation (30) with equation (24) we find

I
RO= LGy ws + | -G

We may distinguish three cases depending upon whether
e is pusitive, negative, or zero., These cases are presented
graphically on the followlng page. Case i corresponds to the
Einstein-Friedmann cosmological solutions which are spa-
tially finite and positively curved. Case 11 corresponds to
the solution which is spatially infinite and flat, Case 1ii
corresponds to the solutions which are spatially infinite
and negatively curved, In the second two cases only those
portions of the curves that can be reached continuously from

$=0 have physical significance.

Observational evidence does not yet permit a choice
to be made between the three possible cases, The flat uni-
verse appears most favorable to the development of irreg-
ularities along the lines suggested by the hypothesis of
gravitational clustering, Consider a small spherical region
in which the density is slightly greater than the average
value., If this region is sufficiently isolated from the
other irregularities so as to evolve independently it will
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FIGURE 1

THE EXPANSION PARAMETER R AS A FUNCTION OF ws
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attain a minimum density and then fall back on itself, On
the other hand the average density will approach zero asymp-
totically. Therefore the density contrast due to even slight
initial irregularities will become very large.

It 1s also aesthetically satisfying to believe that
the cosmological solution describing the actual universe
is particularly simple. In 2 fully relativistic treatment
the first and third solutions require a specification of
an average radius of curvature, something not required of
the second solution. This requirement of an additional
parameter 1s usually obscured by writing the solutions in
terms of dimensionless coordinates in which the radius of

curvature 1s taken as the characteristic length.

In any event none of the following work depends

upon which cosmological solution actually obtains,



CHAPTER IIX
THE STATISTICAL DESCRIPTION OF CLUSTERING

It is clear of course that because of the large
nmumber of particles involved a statistical treatment of the
present problem is required. In such a treatment the uni-
verse 1s to be regarded as a particular realization of an
ensemble of possible universes, Of course since the actual
universe is quite unique the only averages having observa-
tional significance are space averages. Nevertheless, the
introduction of the ensemble concept is natural for the
following reasons.,

Suppose one 1s given an exact description of the
state of the universe at some initial time, One tends to
divide this informatlon into a part describing the gross
structure, comprising such data as the density averaged over
sufficiently large regions, and a part describing the details
such as the preclse arrangement of stars in individual
galaxies. One intuitively expects the macroscopic informatiom
to be self-determinate, That 1s, if one is given two uni-
verses which are macroscopically equivalent but different
in the details of their construction, this macroscopie
equivalence should persist in the course of their evolution.

As a practical matter one cannot hope to obtaln a
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detailed description of the present state of the universe,
Consequently one cannot do better than use the information
avallable to characterize an ensemble of possible universes

consistent with this information.

Finally, if the correlations between the irregular-
itles of the cosmic distribution diminish sufficiently
rapidly with increasing distance remote regions of space
are statistically independent. Since the probability dis-
tribution 1s assumed statistically homogeneous such regions
may be regarded as independent realizations of an ensemble.
For this reason overaging over all space may be regarded as
equivalent to averaging over the appropriate ensemble, The
Birkhoff-Khintchine ergodic theorem (5) provides formal

verification of this assumption,

For the foregoing reasons one is led to consider the
evolution of ensembles of macroscopically similar universes.
One must, however, define the concept of macroscopic equiv-

alence somewhat more precisely.

In the study of plasma waves for example one adopts
the viewpoint that variations on the scale of the wavelength
are non-random. Thus, the average of the density over dis-

tances which are small compared to a wavelength but large
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compared to the mean interparticle distance is considered to
be a macroscopic feature of the distribution. An ensemble

incorporating this viewpoint 1s constructed of represent-

atives which are all similar on the scale of the wavelength.

On the other hand in studying homogeneous turbulence
one views the turbulent eddies themselves as stochastic
entities. In this case only quantitles averaged over all
space are considered to be macroscopic. An ensemble incor-
porating this viewpoint 1is constructed of representatives
which may be quite different on the scale of the individual
eddies but which give substantially equal results upon

averaging over all space.,

The first viewpoint may be called the fine view, It
is appropriate to situations in which recognizable regular-
ities exist on some scale of length which 1s large compared
to the mean interparticle distance. The second viewpoint may
be called the coarse view. It 1is appropriate to situations
of gross statistical homogeneity. Both views are handled

formally in the same way. One merely chooses different

ensembles in the two cases,

On the whole the coarse view is more appropriate to

the cosmological problem and will therefore be adopted.



I, THE DISTRIBUTION FUNCTIONS

Let us again consider the universe to be the limit of
a distribution of N particles in a volume Ll as N and (2
tend toward infinity while NAL =C remains fixed. The state
of such a system 1s given by specifying 6N varlables, the K
position vectors and the N velocity vectors. These may be
considered to be the coordinates of a representative point
In the phase space of the system. A statistical specification
of the state of the system consists of assigning a probabil-
ity to each subset of the phase space. We will assume for
convenience that these probabilities are derivable from a

density D, the Liouville probability density.

Recall now that in the original inertial system the
position and velocity of the jth particle were denoted by
fj and 33. We had also introduced the co-moving coordinates

Sr‘3 defined by
52,, = Yy Resy (32)

We may also define a velocity-like variable in the co-moving

frame,

-

s
Z5= 5 (33)

a-



27
To see the physical significance of 23 note that the

average velocity of expansion of the substratum is given

by

V- B ¥
-3 (3)
where H is Hubble's constant. Since
23"%(%)
= R 3&(%—') (35)
= R( Vy=- %3 H)

we see that 23 1s the peculiar velocity scaled by R(s).

The state of the system of N particles may now be
described by the quantities (¥1...¥ysZj...Zy). It will be
convenient to use an abreviated notation. We will write
(v+2) for (Fye..TnrZye-o2y), dydz for dyi...dFydZy...d2Zy
eta. The probability that the representative point of the
system is to be found in the region dydz about (y,z) 1is
then given by D(y,z)dydz. Since this probability is normal-

i1zed we require

jD(Y,&)JYa% =1 (36)
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D satisfies the Liouville equation. Letting "J be the
total force on the jth particle this equation is

JD
o5, T ° (37)

D &3 20 X Fy
35 +.z:%3 3?“_*2-!'_,5

J 43,

At this point we will 1imit the discussion to systems
of particles of identical mass. This is not a serious limi-
tation because we are primarily interested in clustering on
a scale of length much larger than the mean interparticle
distance. In this 1limit, as we shall later see, the dynamics
of the system are independent of the particulate nature of
the distribution. We might mention however that one can
treat the particles as equivalent and still allow for a
variation in the individual particle masses by treating the
mass of each particle as a random variable with a probabil-
ity distribution independent of the particle index. In that
way the system's state would be described by 7N variables,
the additional N variables being the particle masses. D
would then be a probability density in the 7N dimensional
extended phase space,

Now the acceleration of the jth particle in the co-
moving frame is given by equation (22). Let the constant
particle mass be M and note that .?(0) may be written

e St
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F(o)= MC (38)

where C 1Is the time independent number density of particles
in the co-moving frame. Liouville's equation is thus

rewritten as

-

20 - ¢ =2 @ - lﬂ =
35 ° zzo"“"*.""-‘*a-zo*;"' 23 (39)

’

where the two-particle force exerted by particle k on par-

ticle j has been denoted by

@) Y. - Ya)
F’),’ - = RH(" |Y° - Ya\'l (‘1-0)

"and the single-particle background force by

— 4 v -
0} T ey RMG ¢ Yﬁ' (4+1)

The prime over the second summation indicates that the terms

j=k are to be omitted,

The probability density D obeys a single linear
equation but one impossible to solve in any generality
because of the large number of independent variables, It is
clear however that we really do not want all of the infor-
mation contained in D. The quantities which we may consider
as macroscopic are all averages of sums of terms depending
on only a few particles at a time. Consider two such‘quan-

tities which play a role in the present problem.
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In his continuum treatment Layzer introduced a quan~
tity Tp which is one half the mass averaged square of the
peculiar velocity. Tm is called the pecullar kinetic energy
per unit mass and 1s defined by
- . 5, o) Uy 9K
2 § gy o
In the present particulate description we may define T, as
z MCGn

2 2. M
43)

(42)

T =

]
.mz

raN

MR
9.0
v/

This is a sum of terms depending on one particle at a time,

The total specific binding energy has been defined as

— 3(\35(!') -,
U. = 33.(‘-51 ) X=X X’ ()

In the particulate description this becomes

-G M
U-» T Nw 4Z<,0 <|N‘--K,‘\>
— i w7
<y

This is a sum of quantities depending on two particles at

(+5)

a time,

In general let A be a sum of terms depending on n



particles at a time,
A= 3 a(?d..,.‘{,;_,ao-'... 2;.) (46)
[
where the summation extends over all ways n indices may be
chosen from N without regard to order and a is a function
which is symmetric in all particle indices. The average
value of A 1s then given by

ay =S nads. %, 3 avae

— _N'
- n'( N - ’\)‘, SD(Y) *)6\ (Y '-‘Y", 2-.,,2u) aTJ e (l‘.7)
N' N vy - - . s - n - -
. - S U D(v,2) W Jr..\a.]a(r,_v,.,a“z.)ﬂ' dY.d2.
n‘.(N-h)‘ ! [ LI PR

Here we have assumed, as will always be done, that the

probabllity density is symmetric in all particle indices,

Let us now adopt the abreviated notation
a(¥ye. FysZ1- .. 2y) »a(l..N), d¥;dZy—d(j) etc, Whenever
a particle index appears as the argument of a function it
is to be understood as representing both the corresponding
velocity and coordinates. We now define the t(n), the
n-particle distribution functions.

$7.n) - "5 \ v
)z Q)DL LND d@) (48)

s ney

Now for fixed n
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N! n
IN-—;u (N- ) (49)
Thus, for large N we may write
(A= —:T‘ 5 S(T‘('..-W)G(L..H)AU).. J) (50)

Let us now note some important properties of the
distribution functions. Since D is symmetric in the particle
indices 1 through N £{1) is symmetric in the indices 1
through n. As n increases f(n) represents an increasingly
fine description of the statistical state of the system.

(n)

is contained

in f(n') also. The distribution functions are not independ-

For n'>n all the information contained in f

ent but are connected through the following relation.

‘S(”(I...h): ﬂn-“S‘S“‘(L..H')J(hn),_ Jn') (51)

n's nr

By virtue of the cosmological principle D(l...N) is a
homogeneous function of position. That 1s, in the limit of
infinite volume

-

Dirva, Tiea,  Tura 2. 20)7 DIV, Y, %0, 20 Ba)  (52)

for arbitrary displacements a. The distribution functions

are similarly homogeneous,
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Consider a group of n particles distributed in two

individually compact subgroups. Let particles l...n' form
one subgroup and particles n'+l...n the other, If the
separation of the subgroups is large we may reasonably
expect the subgroups to be statistically independent. That
is, we expect the distribution function for the n particles

to factor.

" w (n-n') .
’f‘ )(l... "\)—"5} ,(l..."') 3 (s w) (53)
We will in fact assume the rate of factorization to be
sufficiently rapid so that the following integral relation
holds.

M)n aa = - - - P - lﬂ', h-n')
‘.-f'z.m -LQ—SS (¥, « x}Y""J"'a\r"'*‘;‘::'o'.*w'#!,...Yn.)tu-.sn)lx350.."')5(""':-1")( 9")
- O

To derive a set of equations for the distribution
functions we multiply equatiom (39) by QF and integrate

with respect to ?n+ ";?N'Eh+1"'ik' the first term is

simply the derivatiie of £{7) \1th respect to s, Since the
distribution is bounded in space integration over'§h+1..:§N
in the second term eliminates contributions corresponding to
J=n+l through J=N, Similarly, in the last term we assume
that the probabllity distribution is such that D vanishes
strongly with increasing peculiar velocity. Then integration

over En+L"’2ﬁ will eliminate terms corresponding to j=n+l

s e
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through j=N. Again, in the third term we have contributions
only from jJ=1 through J=n. We may break up the summation
over k into a part corresponding tok<n and a part corre-
sponding to k>n. This last part may be written as

S-"c) 20 % ’
A ESER-2R faw= B T A 5P s Wnse (59
In the 1limit as N goes to infinity (N-n)/A2> goes to C, the
particle concentration. In this ‘limit the equations for the
distribution functions are therefore given by

P D) a“ Lu 3

5 () +Z. E é(t W) 4 Z £, . m)

7* o JY e 0% (56)
[ 2 - "'
ZZ fa n)4-CEL'ﬁ%_SE:'

(1., ne)dtinn) =2 O

This set of equations 1s essentially that known as
the BBGKY hierarchy after its originators Bogolioubov, Bornm,

Green, Kirkwood, and Yvon.

JI. THE GENZRATING FUNCTIONAL

A number of statistical problems of interest are
handled most easily in terms of a generating functional.
Let us define the generating functional 4] as follows.

il = « n Letuerly

= (o, 23:"‘\.\9 LU, 2s)) draz 7
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& 1is a functional of u(y,z), an arbitrary function

of a single position argument and a single velocity argument,
It was first introduced into statistical mechaniecs by N. N,
Bogolioubov (6), Notice that the functional 1s an ensemble
average of a certain function of the N positions and N
velocities. Let us expand this function 1n powers of u.
ez uw]= 1 2 Tumd« LT unvdds § Tueaudgud,)r..  (58)
2= 1 2,<9, 9,29, <9,

Each sum in this serles 1s precisely of the form of the
right hand side of equation (46). We may thus immediately
apply equation (50) to determine the limiting form of the
generating functional as N tends toward infinity,

Liw XLu]= Ve > -—"-‘-!SS("('L,n)um..u(n)ém..d@) (59)

N -2 N,y

The distritution function £™ is simply the coeffi-
cient of the monomial functional of the nth degree in u
divided by n! . We may also express this in terms of the
functional derivatives of & , the properties of which are
summarized in appendix A. One determines immediately from
equation (59) that in the limit of large N the distribution
functions are given by

$™'0U. )= EE£ZLL:ﬁl ] (60)
uszo

T guur. . Suln
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Now X depends on the time s through the distribu-
tion functions. We may derive an equation for this time
dependence by differentiating equation (59) with respect to
\ s and then substituting equation (56). Invoking the symmetry
| of the distribution functions with respect to interchanges
of particle indices we obtain the following result,

»x" . ) - ta)
P RS ol S

Q g ELl 3 °J" 3;’ Oza

"‘CZ - 5?::, ("(,l,.vm)e\('\")] uth), Mn)di). diw)
(60a)

"" tn)
== Z (n-\)'S [2 P ﬁ ]um um)dir). dn)

ne
\ (n)
* Z n- a)'S‘_\A(ﬂ Vm 9:'5“ 96 ]\AU\A“) win) d). . n)

(oL 0]

This equation may be expressed in terms of the first two
functional derivatives of & ,

¥ &

=D TR ESIEV IR S FPIRRISY (60D)
and

¥ ¥ (rT'-TﬁS‘—“ 0. . n) UL U() A(Y).. ()

SUNBU)  n=e ' (60c)
Thus
Y S =~ 9 X o
e Vo ) W( F o—a—"""" d0)
25 Uy 2 oY, s,um“H ) a2, §UY) (61)

@ $ w9 % <
BSU(')V‘(‘)F 2 % w;)the) SN+ (53\&') 2 L 3F) SUC) Sule) )%9=0
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Another interesting functional, one which has been

employed in the theory of random fields, is the character-
istic functional of Hopf (7). This functional was applied
originally to the study of hydrodynamic turbulence,

Suppose M(y,z) is the density in position-velocity
space of a distribution of matter. The characteristic func~
tional associated with p 1s defined to be

Bl - <ej§m?,i>wc?.3u?a'i > 1w

The n-position, n-velocity correlation functions are then
expressible in terms of the functional derivatives of $
evaluated at w=0,

) %“ @
<,um.._ }A\")>= (',':) SWEY . . W ) ]w-.O (62)

In particular one may express the physically interesting
two-point density correlation function as

SICALISAYE SS ;;;;;;;:w d2. Jz. (63)

WO

Let us now establish the commection between the

characteristic functional for a distribution of mass points

and the corresponding generating functional. For a collection

of mass points at positions F...y with velocities % ...7g
the function A is given by

wan o
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) e
MY, 8)7 B MS(Y-Y) 6(2-25) (6k)
. O:c

Therefore

¢ Lw)

¢ e,;jp(‘?,i)\ﬂ(;,s)é-‘.(d-é N

N >
. z M W, ’3)

=<e )

A M W(4) )

< (65)

= T hi- et ™37
- Z e ™o

We see that the characteristic functional is obtailned from
the generating functional by a simple change of variables.

III. THE CORRLLATION FUNCTIONS

Another set of quantities which describe the cluster-
ing of particles are the correlation functions,sometimes
known as the Ursell-Mayer functions. These are constructed
from the distribution functions but seem in a number of
ways to be more fundamental. One indication of this is that
the correlation functions are independent quantitles whereas
the distribution functions are not. Also, as calculation of
these two sets of functions for specific models will later
indicate, the correlation functions are often the simpler

in form. In particular, as the calculations based upon a
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| model of independent clusters will indicate, if the highest
|

order correlations involve n' particles the n-particle

correlation functions all vanish for n>n',

Let us denote the n=-particle correlation function by
g(n)(il,..?n;ii,..En)=g(n)(1...n). The correlation functions
may be defined recursively in terms of the distribution
functions as follows.

5= 9" W (66a)
S0, B e M0 9 @) (66b)

) 2 ({
5900,2,9)=9"", 2,3) + 91,29 0 + 3 0, ¥ )

t [ [ (] [ 66
+%%,09% )+ 2" 2" @) 9" 3y (66e)

etc. In general each of the f(n) is expressed as a sum of
terms, each term corresponding to a different partition

of the set of indices l...n.

The expressions for the £(®) given in equations (66)
are closely related to the cluster expansion of equilibrium
statistical mechanics., The first applications of this expan-
sion to kinetic theory appear to have been made by M, Green
(8) and Brout (9). Green in particular strongly emphasized
the independence of the correlation functions.

e e rn e s
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It is common practice to denote the single-particle

velocity distribution function by the symbol ¢ . If the

single-particle distribution function depends on position

as well as velocity the velocity distribution function

is defined to be

PE) = b -—SS‘ (%,2)9¥

(67)

In the present case the cosmological principle dictates

that £(1) 1 independent of position. Therefore

H(Z) =

59,3 = 977, 3)

(68)

In order to facilitate the investigatlion of the

properties of the correlation functions it is useful to

first obtain their generating functional. Let Alu) be

the natural logarithm of ' [4] , the distribution generat-

ing functional. The first three functional derivatives of

o/[4]) may therefore be expressed as

3=

(69)
S¢ SA
suw ef buo (70)
5 A1 eP SA  Sh
Sup SUd) € mewm + SUl) sUQ@) (72)
& X AT SSA s"A %A
Suur SUQ SUW) - [bumsum SuUy) buu).sum S} (72)

§.A___._ R N SN Y.
N QIRA) SUL) * SUBI U suc.x

Mm Wo wc 3

e e g i e 2
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Note that

x[o—l ‘= < f!.l_l 4E“UU)]>]U‘°
) (73)

= |\

Evaluating equations (70), (71), and (72) at u=0, substitut-

ing for the derivatives of Z the corresponding distribution
functions, and then solving for the derivatives of A with
the aid of equations (66) we obtain

?m= 2N (74)
@) . §UA

? 0, ): m)]ug o : (79
G A

2 )("L’Q’S\ANSUU.:SUQ)-\U‘-'-Q (76)

It is not difficult to convince oneself that in gen-
eral the following relation holds.

5 A ]
?‘M(': Z_,S)’ SUAUL. ... KA Uu=9 (77)
A then is the generating functional for the correlation

functions,

One of the reasons mentioned for considering the

correlation functions to be more fundamental than the distri

bution functions is their independence. This may be seen as

follows.



L2
As we have seen the various distribution functions

are not independent since they must satlisfy the identity

570 m =g §57 0 e deney (78)

Let us express this identity 1n terms of the correlation
functions. The most convenlent way of doing this 1is to

proceed by way of the generating functional. Consider the
following identity satisfled by the generating functional

LIu].

| X
2 (2= a0

—_L suu wS‘ﬁm V‘)V\\H...uw.IU'..J(n)]JQ')

t)

J\.S[_TS ) +Z oo 5:&“' nM\u..Mle(z\..JN-lAU) (79)

| - Z. _.)!)%w (2..WURL.MALQ).. d (1)

Z

This identity is precisely equivalent to the set of equa-
tions (78). Expressed in terms of A the identity becomes
A
-LS A i,./}_ 1) €
7)€ SUL ) at (80)
L oA -
Evaluating equation (80) at u=0 we find

\

i

_'}LS ?010) d U) = | (81)
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which 1s not surprising since g(l)zf(l). a normalized prob-
ability density. Differentiating equation (80) n-1l times
and then setting u=0 we find

ﬁg"a‘“)u... wWYdey) = O (82)

Equation (82) represents equation (78) expressed in
terms of the correlation functions. We see that the identity
(n)

now affects the various g separately; it does not couple
them. The correlation functions are, in this sense, inde-
pendent. Their independence is not quite complete however,
Since the distribution functions are essentlally probability
densities they are necessarily non-negative, Thus, each of
the right hand sides of equations (66) are constrained to be
non-negative, This set of inequalities obeyed by the g‘n)

limits their complete independence,

Since the distribution functions depend upon the time
through the dynamics of the system so too do the correlation
functions. We shall now derive the equations governing this
time dependence, Let us therefore substitute in equation
(61) the expressions (70) and (71) to obtain first the
equation for A(v],




—g—— SUL\)&. a;p RILN a0) +§\A\' F“ 2 -S—-A— d Q)

suu) 2. sun)
2 Y _8A SA sA
5 wor v F 2 z o2, LSuewisuer 7 s Suw) (83)

2 D S A SA sA
*CSU‘“’F-, "‘é"_sumsum SUUY U

To obtain the equations for the correlation functions
we merely differentlate this equation n times with respect
to u(l)...u(n) and then set u=0. In carrying out this dif-
ferentiation it is best to replace the dummy variables
Y1+ ¥2» z1, and Zp appearing in equation (83) by'§n+1.'§n+2,
2n+l' and zZp4, so that no confusion arises with the argu-
ments of g(n)(l...n). Then, using the properties of the
functional derivative given in the first appendix, the
n-fold derivative of equation (83) 1is easily calculated. The

equations for the correlation functions are found to be

2o 9 (w) XN )
+2.2;:522 + 2, FiSm 9"
95 Z 3799, {::-;. SIEEN

) E;’:’z . 5’3.3 [Qw(n )+ ')."_'. %‘")(.../5..)‘7("}".).2..)} (84)
(2]

s £ ne n) . Mel-n)
+ C ZS F“ —o"_q 1?( (|)n0|) +Z?€ (. o_,)i(.”"") J("")ﬂo

(n-n

where the quantity sm 5.0 A D) represents a sum
of products of pairs of g's, each product corresponding to

a partition of l...n into two subsets, one containing the
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index § and the other containing the index k., For example,
if n=4, j=1, and k=2, the summation is explicitly given by

= V0 20 = 903N ) + 23 )9
’ 49°0U197¢2,3)+ 3 2%, (85)
Similarly, the other such summation in equation (84) cor-
responds to partitions of the set 1l...n+l into two parts,
one part containing the index J, the other containing the

index n+l.

Now, the two-particle force §(2) and the single-
particle background force'ﬁ(l) are connected through the
requirement that the background force just compensate for
the average sum of two-body forces. Since the average

density of particles 1s C this relationship may be expressed
as = @) 2wy
CS Fse + Fg =0 (86)

One easily verifies that for the forces given by equations
(40) and (41) this relation holds providing the correct
limiting proceedure is used.

We may now use equation (86) together with the
requirement that the single-particle correlation function
be independent of position to simplify equations (84). Con=-
sider the last term of these equations, In the summation

over partitions of l...n+l there i1s a contribution of the
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(n) (1)
form g " (l..n)g ~‘(n+l). Evaluating the contribution to

the last term of equation (84) from this product we find

CZZS “" f%‘?OQL“H)3"Qn+')M"OO

=L fFnn oV ] 5, 9w (8tn0d ] (o)

)

=-5" FY. L ... n
Zd_’,l'o 324% ( )

This term Just cancels the third term of equation (84). We
may thus rewrite that equation as
(L] v (»)
9‘9 - Z 29

b

23" 3,
2 ‘ ) (n-n) |
+ ;k'p»;iﬁ '3336 [‘b( b..h)*}:'ﬁa‘m..m (..X..)] (88)

[ ad v - .
4 c Z 5 Fo ne 5%0 [?‘”(| “0')*8%(('0‘)2(? "':")ph.')—
where the prime over the second partition sum indicates

that the term g(n)(l..n)g(l)(n+1) is to be omitted,

Let us note that since the force -1';.(2) is linear in
the particle mass M, in the continuum limit (M—=0, C—=~o00,
MC=constant) the third term of equation (88) vanishes
while the fourth term survives, The third term of the equa-
tion is therefore the part that describes relaxation due to

close encounters..

Before leaving this chapter let us turn to the
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expression of Tm' the specific peculiar kinetic energy, Um'
the specific peculiar binding energy, and §(k), the

clustering spectrum, in terms of the correlation functlions.

The specific peculiar kinetic energy was given in
equation (4l4) as |

Ta = R“’ i <2 (89)

XX

This average is computed according to the general prescrip-

tion of equation (50).

FKS)

Ton = 5 Sa. 5%, 2. 4%, 1z, (90)

Using the notation of equation (61) we obtain

-2 - -
T.. - R& chS b2t 32
(91)

aN
-@ -
- &%_Sé(z.)z.‘ Az

Consider now the total specific binding energy. This
is given by equation (45) as

U.. -GHQ(S) Z- < W-. >

AC)
2GR () o 2 I W
- & -1 2.,20 -,?’3‘\4\‘. d7. 2. 42,
- Yo - - >
- - enRINSIHEENY aTIZIE o2
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= -—GMR S‘.%z X, 2 2,) 1‘(’232‘(’2.)}7 av 22, 43,

B PR e

S

In the 1imit of infinite volume the last term of
equation (92) diverges. Nevertheless, since it is independ-
ent of the clustering we shall regard it as the zero point
of the potential and consequently ignore it. The remainder
will be called thg specific peculiar binding energy Um'

U= - SRS ZED)T aT3ZIE (o)

Let us note that equation (93) does not quite coin-
cide with Layzer's definition given by equation (6). In the
first place his definition 1s inapplicable to a particulate
distribution since for such a distribution the mean square
of the density fluctuations is infinite. Another difference
is that Layzer's peculiar binding energy 1s always non-
positive. This may be easlly verified in terms of the
Fourier transform of the peculiar part of the density. This
transform exists for finite Q although it is not defined
in the limit of infinite volume.

Sy e
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b L =G SO PR 2
Um = am 2.0 I X=x'1

- a ;‘ ; ;"l’ iht.;—;')]
& (it Lfﬁ’—}-‘f"—)evn 414543

_L\""\
"A~w 23 % ma-
-, DHE) T
Lim 9" LgY)y———— 4 14
- L agﬂjm TIUR-F) e 424 (94)
Lo~ -G 3(1)35_— 43
e I Y- 2§'_CL. ma
A
= Ly S ’ﬂ?' J2
S0 2_9&1_ ms
< o0

Um' the peculiar specific binding energy defined by
equation (93) vanishes for a Poisson distribution (or indeed
for any distribution in which two-particle correlatlons are
absent) but may otherwise take on elther sign. In any event,
although the peculiar binding energy defined here differs
from Layzer's it will be shown in chapter V that U_ and
Tp satisfy the same energy equation first derived by Irvine

(4) for Layzer's quantities.

We wish also to define a clustering spectrum appro-
priate to particulate distributions. In order to obtain a
quantity closely corresponding to Layzer's spectrum as given
by equation (8) let us express the peculiar binding energy
in terms of the inertial coordinate X instead of the co-
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moving coordinate y.

MG S (X33
 — 2 Ja d2 —_— JX
Unr = 555 2 (% % ) = (95)

The clustering spectrum will be taken to be proportional
to the Fourier transform of the quantity in parenthesis in

the equation above,

—?.“j;‘i. D
8(&) = LOV\'.;".lSQ ?(3,(%’ . .)Aé J&.JX (96)
Let
w2, 5.~ -z\'h';.-i. €2), = = —n
° (ﬁ)i'?@):je ? (Y,2.2,) dY (97)
Then
B08) = comnt «Ret §3°LERY 3, EL)I2AE, (98)

The constant is evaluated by requiring that 3 (k) like
") integrate to unity.

§3L(i)éi = $(o)

= LFY (99)

= |

Thus - - -~ iy —
S (Zr,2.2,)47.43,

5‘3“’(1«;3.29.\3.45531 1009
—la) - - (100
R*§3% £a:3,214%.433,




R*S$3 P (AR, 2. 20045 4,
S (o, 2,2.) 42,42,

Note that because of the assumption of statistical isotropy
<3 (k) depends on the magnitude of k but not its direction.

The peculiar binding energy 1s expressed in terms of

the clustering spectrum as

cet 2 - I =
u . 2R> 5 ?( ’(0 Z, ia)-‘i‘z!jg(i)nﬁu ‘i
— o -l - L) o0 (101)
- 2% ’C’S‘a ')z,a‘).lz..\a?,};_&&)ai

In the co-moving coordinate system it is probably
more convenient to deal with a somewhat differently normal-

ized clustering spectrum.
Sta)= §3(%,2,2,)32.42, (102)

Thus

R3
(A) =
L (4) T 0, 2. 20020 7, S(ARD (103)

In terms of this quantity Um is given by

Uh = :_—2—3-{_9-)-@. N L)d
R é S(a) % (104)

S



CHAPTER IV
CLUSTERING MODELS

Before proceeding to the difficult problem of the
actual dynamical evolution of the correlation functions it
is useful to first gain a somewhat deeper understanding of
their nature. For this reason we now turn to the study of

particular statistical distributions.
I. THE GLNERALIZED POISSON DISTRIBUTION

Consider first a distribution of particles construc-
ted in the following manner. Let p(¥,zZ) be a definite func-
tion of position and velocity satisfying the normalization

condition

_}LLS P(-‘.()s )IT AZ = (105)
Let the probability density of finding any specified particle
at the location ¥ with the velocity Z be p(¥,2z)/c2 » inde-
pendent of the index of the particle., If the scale of spa-
tial variation of p is large compared to the mean inter-
particle distance almost all realizations will correspond
to the usual concept of a spatially uncorrelated distribu-
tion with an average density Np(¥,z)/n. = Cp(F¥,z). For such
distributions the generating functional 1is very easily
calculated. In the 1limit of large N we have the following.
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Now since

3 f«‘:S‘a("’(c...n) UL, . U(n) 3¢, dCw) (107)

we may immediately identify the correlation functions as the
coefficients of the various powers of u in the exponent of
the functional. Thus, in the present case

>

% (Y.Jio): e( Y\,ét)

7)(")0. .n)=- o n >\ (108)

The distribution Jjust described does not embody the
cosmological principle because different points in space

are treated differently. We may remedy this defect by

[ —



treating p(¥,z) itself as a statistically homogeneous and
isotropic random field. The distribution of particles is
now to be thought of as being constructed in two steps.
First a function p(¥,z) 1s selected from an ensemble of
such functions and then the particles are independently
distributed with a probability density given by the partic-
ular function chosen.

The generating functional for this generalized
Poisson distribution 1s obtained by averaging equation (107)

over realizations of p.

(ecr,drucy, 3) 47 43
Jlu): e ) (109)
But p, being a random fleld, has associated with it a
characteristic functional ®IW] ,
| ( § PCY, 2)WCT, 2 )a74 2
dwl: < EAS P (110)

Therefore the generating functional of the particle distri--
bution and the characteristic functional of the random field
p are related by

Jlul:= d[ful] (111)

It was mentioned 1n the last chapter that the pecul-
iar binding energy given by equation (93) may, in general,
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take on either sign. For the generalized Polsson distribution,

however,Up is never positive. To see this we split p(¥,%)
into its average part p(z) and a part p(y,z) the average

of which vanishes., The one-particle and two-particle distri-
bution functions are then

5 = POy (112)
and
(2) = _ ~ ~
370, PP @+ (POP@Y (113)
The two particle correlation function is
9P, = (P P (118)

Finally, the quantity Um may be written

- g -,

U .-¢ GMR—'S (BT, D) PYAY, 2'))
-7 732

JYJZ a2 11
v (115)

If the correlations of p are of finite range the
ensemble average of equation (115) may be replaced by a
space average and the specific binding energy will then be
precisely of the form of equation (94), We then conclude
that in this case U, is non-positive,

One interesting specialization of this generalized

Poisson model results from the choice of p as a joint-
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Gaussian random field (appendix B), This 1s not strictly

permissible for with a Gaussian distribution there is a
finite probability that p will assume a negative value at
any given point. Since p 1s to be a probability density
this is clearly i1nadmissible. Nevertheless, if the fluctu-
ations of p from its mean are sufficiently small compared

to p this objection cannot be of practical significance.

As is shown in appendix B the characteristiec func-
tional for a joint-Gaussian random field is

i3 Pwmweran -3 KB ywe iwe) sur d@) (116)

dlwi- €
The generating functional for the distribution of particles

is thus

S Bumag + 3 5< S Pepuen u@ ap) ae)
Zlul: @ (117)

and we conclude that for this model the correlation func-

tions are
20T, 2N PN, 2D (118a)
%(z)( :;| ?‘.\' .ng i‘t)‘- < 6’(;:\, ;0 ) ’P"(:‘:‘L' EI)> (lleb)

¥ (.n) =0 n>e (118¢)

e ot



II. HIERARCHICAL CLUSTERING

We have already seen in chapter I how hierarchical
distributions play a special role in the hypothesis of
gravitational clustering. For this reason we shall now
study an idealized and simplified model of such distri-
butions. It seems rather appropriate to take the particles
of this distribution to be stars.,

Let each of the N stars belong to an n-member cluster

of stars. Let each of these clusters belong to an n'-member
cluster of clusters or supercluster. Finally, let the super-
clusters be randomly distributed in space, The stars,
clusters, and superclusters form a three-level hierarchy.
We will denote the position and velocity of the jth star
by :73 and 'z°j, (j=1..N), the position and velocity of the
center of the kth cluster by ?'k and i'k, (k=1,.N'=N/n),
and the position and velocity of the center of the mth

supercluster by y"  and z"p, (m=1..N"=N'/n'),

Let P(y,zl y',2') be the conditional probability
density for the distribution of stars given the distribution
of clusters. Let P'(y',z'| y",2") be the conditional proba
bility density for the distribution of clusters given the
distribution of superclusters. The unconditional probability
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density for the stars will then be given by

P(Y,2) ='5 P(Y, 212V P(Y, 2'IY) 2" PCr! 2 avaear a2 (119)

Let the conditional probability density for finding

a particular star at ¥ with velocity Z, given that the
center of the cluster to which it belongs is at ¥' with
velocity 2', be F(¥-y',z-z'). F is to be a universal cluster
function and is independent of the particular star and
cluster chosen. Let us assign stars l..n to cluster 1, stars
n+l..2n to cluster 2, ete.. The conditional probability
density for the distribution of stars given the distribution

of clusters is then

v N -~ Y !
P(v2IY 27)= F.F(‘Q—ﬁ;,zﬁ-i“) (120)
where
ﬁ’j: ! 6: ) n
42 97 met..an (121)
A;: N 4= N-net . N

In precisely the same way we shall write the condi-
tional probability density for the distribution of clusters
given the distribution of superclusters as
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Pl(x' 2"1¥52") = 1T F (- Yy 2o '2',.";) (122)

where
MA S‘ ﬁ:' R h'
. (123)
Mgz N Rz N-nb N

and where F' 1s the universal supercluster function,

Finally, we assume the superclusters to be independ-
ently distributed with a probability density which depends
only on their veloclties.

1]
| fndi 1)

1 " ) I F‘_ ““(
SCATREF A LR az

With the aid of equations (119), (120), (122), and
(124) we may now construct the generating functional for
this distribution,

i N" " N' [
Z [u __5__" Tl- F (5-:.) rr F: (Y ,_?n -201_21-
e I e TR (125)
¥ o> o ' oo \
xz‘.‘:(\j -Tg, _'%&_)[u.-;_ Uiy, ;) [Irdedridz'av ae

To carry out the ¥ and Z integrations note that the
integrand is symmetric in those §J and EJ corresponding to
the same values of k. Similar remarks hold for the y' and 2'

integrations also.
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c[IvEui)atai i ava "avtaz”
= byl rrdn)[fpeetd) 3105 SRy, 231
[0 2 ud3)]9743 {7979 ]"'J?".\—é"
{S—- (2 )[SF(Y ¥ 5 2 )én 5;(‘1;‘;“ (126)
o ~ - ~ - N
U, 2 )47 423 d Y‘Ja'] aTng3e ]

Uﬂ Fieem)] :+5\—'(¢'-“'" DY G)3-&

where we have used the notation

n n!
(P) T prn-ed (127)

for the binomial coefficlents,

Now, since
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C
.—fl—l = nNn'NY (128)
and since
x \N" X
Lim (1+5) = e (129)
N"- 00

in the 1imit of large N" the functional 4] becomes

-

XLu) = exp | o S FT *')Z(,)\F(v' 2-3)

1 (4] - - L . L P.n - (1 0)
x;l: ()¢ %SF(Y-*r‘,z-e')\Aw,t) ayaz a-r"u-_]' 3

Note that this functional is exponential in form.
Thus A, the generating functional for the correlation
functions is simpler in form than 5 , the generating
functional for the distribution functions. Let us deal then

with A.
Alul= S, Srrz '"")Z:('})[F(T vi2lE")
E BB ) q

15 S N ) - ~A I Yy >y - o 1 1
‘:‘;'(:)EtSF(Y—‘V', 2 ~2u(y, 2) -\\’.\a}? 3 30

We mentioned in chapter III that if the highest order
correlations involve m' particles the m-particle correlation
functions vanish for m>m'., In the present case since there

are exactly nn' stars per supercluster that is the largest
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number of stars that can be correlated. If we examine the
functional A we find 1t to be a polynomial of order nn',
Thus we indeed verify that for this model g(p)=0 for p>nm’',

It 1s instructive to consider a special case of the
present model, the limit of simple clustering. If we set
the number of clusters per supercluster equal to one, and
then demand that the cluster associated with a given super-
cluster be located at the supercluster center with zero
relative velocity, the clusters will be independently
distributed with a velocity distribution given by F", We
obtain the generating functional for the correlation functions
in this 1limit by setting n'=l and F'(¥',2')= §(y*) &§(z') in
equation (131)

A \ ", v & oA - ., VR - T
Alul- § T ()5 SF@IFER 230 6 7 530
s (132)

XU, 20008, e W% 2 )% a3, . 7, 43,

Now, in general

2 19)
Alu]- Z;!S‘b U QU Uw) dur .. Jdee) (133)

L=

Comparing equations (132) and (133) we may immediately read
off the correlation functions.,
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2™ @)= ;:"m', " 5:—“ (2")F(£X,3-2"). . F(%-7,8-3" )4 32"
12 0<w (13W)
| = O 2>n

In the more general situation described by the full
functional of equation (131) the expressions for the correl-
ation functions are a good deal more complicated. This is
because the entire summation over R is raised to the pth
power and the powers of u appear in a complicated way. Rather
than go through the unrewarding process of deriving the
general expression for the correlation functions we will be
content to explicitly determine only the first two. These
are in any case the most important physically. Let us there-
fore refer to equation (131) and extract the terms of first
and second order in u. The first order term asises from the
contribution of {&=p=1l. There are two second order terms,

one from £=2, p=1l and one from f£=1, p=2.
Alul:- %\'SF"(i"\(?‘)F(?' “',“' 2")(7F(2-F, 2-2 )-u(v 2 )AL ITaE gt 92"

- Al -ﬂ"-l"" N oA, ' A - D B,
= S RE LR TN W RN 3,2 6, 2 )L F -, 52
iy —A ) ~h =D

UG, 2,7 42, d T, 47 dT 92 9T 02 (135)

*..S_TSF *.'Xn )F'(;.,';_-\;';E.n 3.'X?)%F6:: -‘.:,',2 a )U(Yé)
- vl A1)

T A A U PY TR I IR TR E AT P

+ O(u?)

S e ey ——— -
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We may read off the first two correlation functions
by comparing equations (133) and (135).

F7,30: (FE@F(FL; 33 PE-7)5- 29703037

(136)

FUSET, 2 ,)-——5 FIOE)FF-Y IR 5-2 )R- T)2,- 2 Witaddfad”

A A Y " arat

! "o -y AR A - NWAl Ah _ & arA bt A -
+n(2—‘)5_ F(2 )F'(Y a %)F .J%.-a\ )F'(f:'.r, z&'-a)F(n-r“e,-z.)g JNMWa

We have seen that S(k), the Fourier transform of the
velocity integrated two-particle correlation function,
describes the distribution of peculiar binding energy in
Fourler space. Let us calculate this quantity for the pres-

ent model.

To begin we define two quantities,

F =792
(137)
FE' @ =53y 43

\J(¥) is essentially the average density profile of a
cluster and J(§') 1s the corresponding supercluster
quantity. The velocity integrated two-particle correlation
function is easily expressed in terms of these density
profiles.
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(T 2,538 02, 2(F(F-7) Fu-THF
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Writing this equation in terms of the difference coordinates
¥=¥,-¥, and then taking the Fourier transform with respect
to ¥ we obtain

¢-."~
TARY __

S(a)s &= 5 ¢ F(Y-F)TF-T")JFa¥

<

2§ MRS LT )T (T IR S IFER T 9T I
— . = _ (139)
= 22 FATR) « 1Y SHFAFDHFED

- 2t | S+ 22 G F D)

The last step follows from the reality of the profile
functions,

To this point the cluster and supercluster shapes have
been left arbitrary. For the sake of definiteness let us now

take them to be spherically symmetric with Gaussian radial

dependences,
J(?) = Coﬂs+_ Q._ ﬁ‘-
e
s, y e (140)

T : onsd, €
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where the constants are to be chosen so that J and I’
integrate to unity. A, is the characteristic cluster dimen-
sion and ’{s is the corresponding supercluster quantity. The
Fourier transforms of these shape functions are

- AL /e
()= e

]

_gt ks /e (141)

(A)- e

W)

Substituting equations (141) into equation (139) one obtains

- _ 2t A nn-1 ~2 (A 2 25D
S(#): B ¢ +— ¢ (1%2)

This function is graphically illustrated on the next
page. Note that it is not characterized by peaks at k=1/ A,
nd k=1/ Xge Thus, even a precisely hierarchical distribution
i1s not necessarily characterized by a sharply peaked cluster-

ing spectrum.
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Cs (k)

i _
1/(R§+R§)1/2 1/R, k

FIGURE 2
THE CLUSTERING SPECTRUM S(k)
FOR A THREE-LEVEL HIERARCHICAL DISTRIBUTION



CHAPTER V
THE DYNAMICS OF CLUSTERING

Up to this point we have said nothing about the solu-
tions of the equations of motion for the correlation func-

tions. Recall that these equations are

9(“) n n-n"
+Zio *'=_‘+Z “n [a%.. h)*Z'i(o‘)?l D]

o (143)
K;S Ei,nu'ﬁ (?(?; ’VH‘) "’? ‘?(no)? 2" n’:n)lel(n-u] =0

where
= . r -
Fin MG R ,; ?,'\‘ (141

These are an infinite set of coupled, non-linear, integro-
differential equations. Although their general solution 1is
clearly hopeless we may derive from the first two of them
an exact conservation relation. We shall also investigate
these equations in the limit of weak clustering and, in that
limit, obtain a useful integral equation for the clustering

spectrum.
I. THE ENERGY EQUATION

Let us recall the expressions for the specific
peculiar kinetic energy T, and the specific peculiar bind-
ing energy U _,
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-2 . - -
T - Eg’—- {27 En2t a2, (145)
and
U MCG R(sY (97,580 a3, 93,07
- 3 y= ' Taly ' e (1%)

We shall now derive a conservation equation for these

quantities.

Let us first explicitly write down the first two of
equations (143) making use of the information that g(l)(il,il)
is actually independent of'il. that 8(2)C?151-9222) depends
on the coordinates 3"1 and '5"2 only through their difference
'§, and that.fj,k=-ﬁk’3.

o) (\)(2'" — D C - A - -
_%;J +CSF.J3_.;‘Z?"(V,52 d2,dY = (14+7)

1)

AL ‘T’;. -5 )(‘a(' SEE XY XEY)
s S 1900+ 302,997 (0] 40 (148)
+ e\, %—2‘ [3%,2,)+ 20,3) 9" (2330 = ©

We now multiply equation (147) by z12/2 and integrate over
;1‘ The second term is to be integrated by parts and the
surface term discarded since we assume g{2) vanishes rapldly

at large velocities.
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1} Y
asS ? )-—Jz. + MGCR)'—— NI A NP YT (149)

Next we divide equation (148) by 2y and integrate over y,
Zy» and Z,, Here the ¥ integration is done by parts also.
Again we neglect the surface term because g(z) is assumed

to vanish strongly with increasing y.

) L 2 (l"zg (2)- - - 2 A
SES%C ('f )aYJE.Ji J‘I"* ¥322,)d2,d2,dY =0 (150)

since g(2) is symmetric with respect to particle indices 1
and 2

%m)(\?_’ 2,20 9 (_?.J 2.2.) (151)
Equation (150) may thus be rewritten as
3% S‘bm Y2, fz)g';,ai.aé'.d Sg'— 2 (7,7 8)0.02.dT =0 (152)
We now multiply equation (152) by MCGR and subtract it from
equation (149).
2 ‘D('L)n)-“-l HéGQc-;ls S?“t?','i.?‘)::‘, JEIZIY = O (153)
Or

(RiT»\) + R S\Q(RU'\) =0 (154)

Now the time-like varieble s is related to physical
time t through equations (15).




4 _ptd
LRt (155)
Thus
2 d T 3 d i
REE(RT T+ R S (RUL) =0 (156)
Or
2 (Tt Un) + H(2Tu+Ua) =0 (157)
Where
2 4R :

Equation (157) is the energy theorem first derived
by Irvine (4) for a continuous distribution and in terms
of Layzer's peculiar binding energy. One of the most sig-
nificant features of this equation is that it 1s exact., It
is probably the only exact result obtainable from equations
of motion (143).

II. THE WEAK CLUSTERING APPROXIMATION

In order to proceed further with the solution of
equations (143) we shall make two simplifying assumptions.
The first of these is that the range of correlations is
sufficiently great compared to the mean interparticle

distance that the particulate nature of the distribution
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does not appreciably affect the dynamics of clustering. In
other words we shall assume the applicability of the con-
tinuum limit. The second assumption is that the intensity
of clustering is weak and that a linear analysis may there-
fore be employed.

Suppose the clustering 1s characterized by a cor-
relation range A and an intensity € . € may be taken to
be the contrast of density fluctuations in the more usual
continuum formulation. The continuum limit of equations (143)
may be expected to apply when the force on a given particle
due to its near neighbors, i.e. particles at a distance of
order C™1/3, is much less than the force due to the density
fluctuations. Thus, the condition for the applicability of
the continuum 1imit is

MG R (eMCc®) GR
sy ST g

(159)
Oor
C'? < 2e (160)

Since we shall assume the clustering to be weak,; and there~-
fore € to be small, condition (160) is stronger that the
mere requirement that there be many particles within a

sphere of radius A .

e et e e e
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As the clustering progresses € will increase and
most probably A will also., Therefore if inequality (160)
is initially satisfied if will be satisfied for later times

too. We may thus regard (160) as a condition on the initial
distribution.

To obtain the continuum 1limit of equations (143) we
merely discard those terms involving ﬁj k? and therefore M,
without a compensating factor C., Thus, in the continuum limit,
equations (143) become

9™ A 5 P

—-——+ o e —
s o0 oY,

-

(161)
(2 (na e , 2 en (nat-N
+C OZ'ZS &Jnn.g—‘z’d l% (l:.. ) -o-zp_'. 5‘(..)6,,)?, ? . nﬂ)]J(vhu};o

We shall express the second assumption, that the
clustering 1s weak, by demanding that for nz=2 g(n) be of
order n in & . We may motivate this particular assignment
of order in € as follows.

It seems reasonable that, at least as far as the
orders of magnitude of the various correlations are con-
cerned, the weakly clustered distribution presently under
consideration will be similar to a generallized Poisson

distribution of chapter IV, Such a distribution may be said
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to be weakly clustered iIf P, the fluctuating part of the

random field p, 1s small compared to 5, the average part.
We express this by writing

P, 2y= P(YV,2)+ € P(Y,) (162)

Now, the generating functional for the generalized
Poisson distribution is given by equation (109) as

oI

< Q_th‘?,i‘)u&,i)Jna 3

Z1lul = | (163)
FE UK 3)aTad, €S BP, 3Huy,raved
— eS ( e) <Q ) d >
Let us define a new functional A' by
Aleul _ ¢ ESPERBIUE, TuTad
e =% ) (16%)

A' presumably has a power serles expansion., Therefore

A [e U] - nz'. n‘ Su(n. ) Su(n)]U( ).U( )Jc ‘.d( ) (165)

U=0

where the only dependence on € 1s shown explicitly.

The first term of this series must actually vanish
since by equations (112), (163), and (164)

$ U ] Uu=o (166)
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- - A'len) A‘
= P +[ ¢ o ),
Or
s A _ .
Uso0

We may therefore write the generating functional & as
. e an & E°( TA
xr_u] _ e—SV(a)u(v's)JfAe 4?‘.‘ “!S'—__Su«-z.s«m1:"""““)&"“3‘") (168)
We see at once that the correlation functions are given by
A= P (2)
(169)

LY

n _ n
PN W= ¢ SWL) .. G ln)

Since the only dependence on € 1s shown explicitly the

order in € of the various correlations i1s as assumed,

This assignment of order in € will be meaningful
only if it is maintained by the equations of motion. It is
necessary that the equation involving %2;:’ have no terms
of order €' where n'<n. If this is not the case g{n)
will quickly grow to order ', Reference to equations
(161) shows that in the continuum 1imit the equations for the
correlation functions do indeed satisfy this condition. This
18 in sharp distinction to the more general set of equations

(143) Here for example the equation for g(z) (1,2) involves
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a term

E'.u ' (52; - 59?. )% ) ?‘”(2)

which 1s of the zeroth order in € , Thus, even if g(2) is
initially of order € 2 it will quickly grow to order unity.

Now, consistent with the assumption of weak cluster=-
ing, we shall agree to retain terms of at most second order
in € , In that case we are left with only the first two of
equations (161). Written out explicitly these surviving

equations are

() Pieed -t any -
a‘a‘ (2,) . CS F,e ea“ ¥,22,)42, 47 = 0 (170)
and
aau)(;,.i é.z) . (2 z ). ?(n(;{-_ é'é' )
2° TRl ey ) TE

+e\Fs & M le,matniw (171)

N
+§Fyy 55 70009 = o

(1)

Since the time derivative of g is of second order

in € we express g(I) as
973, ,9): BE * 9 (E,9) (172)

where @#(2) is the zeroth order velocity distribution func-
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tion and gél) is the second order correction. #(2) is inde~
pendent of the time and is determined solely by the initial
conditions. Substituting equation (172) into equations (170)
and (171) we obtain

Pﬂi +CS Fo,e’—

(@) =» = = 2
T 2 2 (Y2202 87=0 (173)
and

9?((.‘)? 2.20) + (2,-2.)- 2 @) . 3
o

25

+c-———-r—-SF 197 (2,3) 43) (174)

acbfe;)S =3 (2)

T R 32 (LNdB) =0

These equations are more conveniently expressed in

terms of the spatial Fourier transform of g(z)s
GUL,2 )5\ widF U7, 2.2.)4% (175)
Recalling that
E-Jz = - MGR“)(‘:—-\:":E"‘;
- nGR——~Se’" ;4. (3-7) rT;." -‘i (176)

—y

- xeM(,Rje‘“‘“""*’ ﬁ-”\i‘

and again letting

(4)" = M C C;‘4-Tr (177)

R
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we substitute equations (175) and (176) into (173) to obtain

o

ELACAR a&R 5 3VE,2.3.)92, 480 (178)
25 22, ) a* 2

We may also take the fourier transform of equation (174)
using the symmetry relation (151) to obtain

D‘)ad'aeQ emi £-(2-20)93,2.2¢)
S
2 D¢(.é:) _.i.: S—t‘\.»..‘ - -
) a%a o2, A Ay2329)d24 (179)
3¢(§t) 3 e - -2 =
+i 2 W'R 22, %\. °&u)(5133-2'3w%3 =0o
e 2

It was mentioned in the introduction that Layzer's
principal conjectures concerning the development of the
clustering spectrum were that highly developed regions of
this spectrum tend to grow at the expense of less highly
developed regions, and also that there 1s a general flow
of binding energy from the large wave number end of the
spectrum to the small wave number end. We notice however
that k appears in equation (179) only as a parameter. Thus,
to the accuracy of this linear analyslis, the various parts
of the clustering spectrum are independent. We therefore
conclude that the flow of binding energy envisaged b& Layzer
is an essentially non-linear phenomenon and lies beyond the
scope of this linear theory. One would hope to be able to
treat this energy flow in the lowest approximation by
4

retaining in equations (143) terms of order ¢ 3 and e too.
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Such an analysis will be quite complicated and will not be

attempted in this thesis. Rather, we shall continue with the
linear theory, partly because the initial development of the
clustering spectrum is itself of considerable interest, and
partly because an understanding of the linear theory 1is a

clear prerequisite of any non-linear treatment,
III. AN INTEGRAL EQUATION FOR THE CLUSTERING SPECTRUM

In order to derive a simple integral equation for the
clustering spectrum it will prove useful to consider only
those solutions of equation (179) which develop from
initial conditions of the form

Uk, 2. 51)] = A(%,3) ATE,%JH(;) (180)
Se

]

Here h and H are arbitrary functions having appropriate
symmetry. These initial conditions include as a special
case distributions which are correlated in position pnly.
Since the restriction applies only to the initial state
and involves no assumption as to the time dependence of the
correlations it appears that no serious loss of generality

results.

For the sake of clarity we shall henceforth explic-
1tly indicate all time dependence.




Let us define

4

2"13-(5,-5 IS -ce) =
‘ %c.(i) 2, .,S) (181)

%(;;22‘1,5
Substituting this definition into equation (179) we find

233,28,
3 s .

- Y

T Rs) 2ms 2.2 S
W se

dA(2) -
—=\'"‘a,. )¢ 3; z‘,s)é?, (182)

+a

- W Re) SRR dHE) g (e
=4 Tw e XA DN

Consistent with the assumed initial conditions let us seek

solutions of the form
F(3,2.3.,9= AAE, 98K T O HE) (183)

where H(k) is time independent, Substituting equation (183)
into equation (182) we find

mik-2s y (3 U R R
Al ,%,,s)ff?;ff-ﬁ’ i :ﬂa v Da ;a) % e A, e,,s)Je,}(leh)
M2 itk 22T )b/3y) 3 AERY
+A(i, S l 2 = e ""3?;— 2\5 ﬂ(ﬂt S)Jf.) (o)

We find that a solution does result provided h satisfies
the equation

94(2)_5’5) }WR él—ﬂﬁz %SMi) i SC_ n;‘i.-é
9s 10 32 2"

’
. ]

K30 0 (185)

We may obtain an integral equation for h by integrat-
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ing equation (185) with respect to s.
;1.3 -2m '
" XD, £ S ik Aaa $Nazds’

A(ias% SR(S)Q 35 &

- 86
- AE T (186)

Here h(K,Zz,0) 1s determined by the initial conditions.

Now the quantity of principal interest is the cluster-

ing spectrum S(k).

5(4,9) = § 3L, 3 8,9 Jiak,
-_-S iR @A A4, i.‘._,s)A (% 3. HA)d2, a2, (187)
= v | (e *%sxcf,é",s)e‘é \*
Let
Y (Xs) = Se-wz‘s T4(%5 )42 (188)

To obtain an integral equation for S we mltiply equation
(186) by e -2mikeZs 5pg integrate with respect to Z.

S(%S)* SR( )S-zn iR 2(s- S)_Q_ﬁ(ii) 1 3(15)&@ as’

5 -‘I.ﬂ-'i %$A(2, ,O)d? (189)

Let @(3) represent the velocity Fourier transform of
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g(2).

{5(5)=5€. |  H(F) 32 (190)

The velocity integration on the left hand side of equation
(189) may now be done by parts,

S(4,9) - w"jR(s‘)ali(S-S')](s-s') METIDPFIL
o

191
i se (191)
fe

A(Z,2,0)42

The quantities B(), R(s), and h(k,%,0) appearing in
equation (191) are all known. This equation is therefore a
Volterra integral equation of the second kind. Such equations

are very well suited to machine computation.
IV. NUMERICAL COMPUTATIOR OF 3

Consider now a general Volterra integral equation

of the second kind.
S
O é K (s,8') 8(s')ds' = 7 ¢s) (192)

Here K(s,s') and 7](s) are known functions and are assumed
bounded over the range of values of s which are of interest.
We wish to determine 5(s) for 0<s<s .

Let us divide this domain into N discrete increments
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of length &, Let

Se = O
Sw= Nao (193)
S = Smm
And let
5(8a) > 5.
ne.) = 71, (19%)

K(SnJSn') = Kﬂ)n"

Evaluating equation (192) at s=0 we have
3.= Mo (195)

We now convert equation (192) to an algebraic equation by

approximating the integral by means of the trapezoidal rule.

n
3 — 22 An Knw S 8 = 7, n>o (196)
n=0

where

(197)




8k
The % p Day now be determined by a simple iterative pro-

ceedurse,

Sa

n-y

Mo + B An K Sy B
' - ‘& Kn‘nA

(198)

Proceeding now to the solution of equation (191) let
us choose the following initial two-particle correlation

function.

-~

3" (2,2, 2,00 ENVBE(ENSE,0) (199)

Here ¢(2) is the single-particle velocity distribution
function and S(kK,0) is the initial clustering spectrum. Com-
paring equations (199) and (180) we see that in the present

case
h(%,2,0) = $(2) (200)
and therefore
jc"“‘i'gsAcﬁ.E,omf.— & ( 3s) (201)
Note too that in the present case equation (187) becomes

Sck,;s) = §(4,0)] & | (202)

We shall choose P(2Z) to be a normalized Gaussian,
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Since the Fourler transform of a Gaussian of zero mean is

another Gaussian of zero mean #(P) 1s of the form

- bprt
The constants a and b are easily evaluated.
| = Sdcé') 4z
= @(9) (20%)
= Q
And
(2%) = S #cz) 2% 42
t e "z"“';'g, > s
= - — v, Je ¢(e)4a]
(ZT‘). [ e P=z0
' T I (205)
= —-(;.-TT)Z[ Ve ¢(§)]y,o
_ (-3
T (2mye
Th
s em®<2?> p&
- - 6
S = € (206)

For simplicity the expansion parameter R(s) will be
taken to corréspond to the marginally bound universe, Set-

ting A =0 in equation (31) we have
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_ 6
R(S)= =—oase (207)

It 1s convenient to use units of time and length

such that
w" =) (208)
and
@en¥<2Y |
~ =] (209)
In these units
n “w - E ( ﬁsn)
. (210)

and

K = R(3p) (Sa- Sp) & L&(S.- )]

(“‘f = A=) & $2tUn-nde]t (211)
nNA-Ye6

i

Equations (210) and (211) may now be substituted into equa-
tion (198) to give 3 as a function of k and s,

In order for the results to be easlly interpreted

it 1s necessary to express them in terms of the physical

e = e
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time t. Let us therefore integrate equation (15) using the

form of the expansion parameter given in equation (207). We
shall take the origin of time at the start of the expansion,

corresponding to s=- 02 , Thus

£+ 5 [etaf

(212)
(C-5)3 '

The actual numerical computation of ¥ was carried
out with the ald of the I.B.M. 1620 computer at Brandeis

University. The value of s was taken as 2.205 in order

max
to allow R to increase by two full orders of magnitude. The
number of increments N was taken as 100. The wave number k
was allowed to take on 11 values in steps of 0.5 from 0.0
to 5.0. As a check on the accuracy obtained the calculation
was repeated at 200 increments for k=0.0, 1.0, and 2.0 .
These more accurate results differed from the 100 Increment
results by less than .5%. The final results are presented
graphically on the following two pages and in tabular form

in appendix C,

With the aid of equation (202) one may draw some

'simple conclusions with regard to the clustering spectrum

from this data. It is clear that the portions of the spectrum
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at large wave numbers and therefore corresponding to short
wave lengths tend to rapidly diminish, This 1is due to the
phenomenon of Landau damping or phase mixing. The small
wave number portion of the spectrum tends to rapidly grow
with time, This is a reflection of the long=-range nature
of the gravitational force., We conclude that there is a
rather poorly defined characteristic length A such that
clustering on a smaller scale tends to diminish and cluster-
ing on a larger scale to grow. Somevwhat arbitrarily taking
the dimensionless critical wave number to be unity we may
express A in terms of the physical quantities entering the
problem. Refering to equations (208) and (209) we find

e 4 e
Ax__'_(?“)(a)

w3 (213)
{2y LN
3 3

This is substantially the result of Jeans (10). Of course
the details of the time development of the irregularities
as developed in this thesis differ substantially from that
early work. In particular Jeans took for the unperturbed
system a static universe, now known to be contradicted by
observation. Also, Jeans chose to represent the material of
the universe as a compressible fluid. This real fluid dif-
fers from what has been called in thls thesis the continuum
limit of a distribution of particles by possessing at each
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point a single velocity of flow as well as a certain pressure.
As a consequence, Jeans found that small wave length dis-
turbances propagated as sound‘waves rather than simply being

dissipated as has been shown here,

A more relevant treatment has been given by Lifshitz
(12). In this general relativistic analysis the unperturbed
state was taken to be an Linstein-Friedmann expanding uni-
verse, Here too however, the material was assumed to be

an ordinary fluid and so again no Landau damping was found.
V. THE EFFECT OF NON-LINEARITY

It was mentlioned in section II. that interaction
between different parts of the clustering spectrum results
from the occurence of non-linear terms in equations (161).

Let us see how this comes about,

Differentiating the second of equations (161) with
Eh N
respect to s on obtains, among others, a contribution to Ft

of the form

E (= 3 220t
(ZSR,;';"% S 4(3)

a2z
Substituting for the time derivative of g{3) the quantity
obtained from the third of these equations one discovers

valt)

a partial contribution to 3¢t of the form
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L\u

- - @ . .
c’ S (Fus- g%, s B L ) R 196,29(30+ 2112, »)

" ?z,«y . 3233 \_?u(':‘,z.) 3G , )+ ‘3“(')2, 1) 7‘?\ A 4)]34(94(4)

b

Since g(2) appears quadratically this expression will,
upon Fourier transformation, result in the occurence of

a convolution integral of the form
§ $(RHYAEF-2) R

Such integrals represent, in some sense, the interaction of

different parts of the clustering spectrum.

This property of non-linear terms resulting in the
coupling of different parts of a spectrum function is actually
quite general. In the theory of hydrodynamic turbulence, for
example, the quadratic appearance of the velocity in the
convective or inertial term V-¥¥ results in a similar
transfer of e'ner_gy between different parts of the correspond-

ing kinetic energy spectrum.



CHAPTER VI
SUMMARY

At this point 1t may be useful to summarize the
physical results of the work that has been presented.

First of all, we have seen that it is possible to
introduce a set of coordinates in which the expanding system
of gravitating particles assumes the form of a non~expanding
distribution with a negative mass background and an explicit

time dependence of the gravitational constant.

It was shown too that the correlation functions pro-
vide a convenient description of the statistical distribu-
tion of particles. In particular, the discussion of hier-
archical clustering showed that the vanishing of these func-
tions corresponds to the absence of correlations in the

intuitive sense.

The two-particle correlation function was used to
redefine Layzer's peculiar binding energy in order to obtain
a quantity more appropriate to a particulate distribution.
It was shown that this redefined quantity obeys precisely
the same energy equation as Layzer's original quantity.



APPENDIX A
FUNCTIONAL DIFFERENTIATION

Functional differentiation plays the same role in
the theory of functionals as partial differentiation does
in the theory of functions of multiple variables. The oper-
ation was first introduced by V. Volterra (11).

Let ® be a set of variables in some space. For the
applications of this thesis X will denote a point in six-
dimensional position-velocity space. Let ¥Iwl be a funce~
tional of an arbitrary function of X, w(X). The functional
derivative of ¥ with respect to w at the point X is defined

to be
S PIwl _ Lim YIW+6,]1- ¥lw]
- &0 - - (A la)
swx) 2% Senex
where & 1is any function satlsfying the conditions
6,(x’) =0 1X-x"1=N (A 1b)
and
0 £e(¥N<e IX-X'1<7 (A 1c)

The functional derivative of ¥ with respect to w
at the point X is thus the ratio of the increment in P,
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The actual calculation of the clustering spectrum

for a three-level hlerarchical distribution showed that the
occurence of clustering on some well defined linear scale,
say L, does not necessarily imply a peak in the clustering
spectrum at k=1/L. It appears that the stability of the
clustering spectrum in the ordinary sense 1s not quite
equivalent to the stability of the physical clustering hier-

archy.

In discussing the general structure of the equations
of motion for the correlation functions it was seen that the
interesting problem of the transfer of energy Between dif-
ferent parts of the clustering spectrum requires a non-

linear analyslis which has not been attempted.

Finally, the numerical calculation of the development
of the clustering spectrum in the linear approximation
showed that large-scale irregularities grow because of
gravitational clustering while small-scale irregularities
dissipate as a result of Landau damping. The dividing line
between these two types of behavior is approximately the

Jeans critical wave lengthe
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when its argument function is varied very slightly in the
neighborhood of X, to the integral of this variation.

The most basic class of functionals are the monomials.
Let £(X1...X,) be a definite function of n points in X space.

f generates a monomlial functional of the n'th degree,
Y Lw] =>-5($<‘. o K YWEEL) . WKR )G d Y (A 2)

We may, without any loss of generality, assume f to be
symmetric under any interchange of its arguments. The func-
tional derivative of ¥ 1is calculated by substituting equa~-
tion (A 2) into equations (A 1) and dropping terms of higher
order than the first in 6 ( and therefore in e ). The result
is

g%vm 5 §(;- -in) W(?.)-.W(-in)c'?... J—in

(A 3)
= "5"“ XyXa.. Xn)WEK,), WK A )4X, . . 9 Ru 3

Notice that the result is a monomial of one degree less,
This process may be repeated. In particular the n~-fold

derivative is given by

)

5‘ - 505, K YR, Wik )4 K, .. d K
SWAK)).. sW(X.) (A 4)

= ' 5K LX)

s ————— e
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The function w(X) may itself be regarded as a mono~-

mial functional of the first degree by writing it as
W) = 5 SCX- XYW ) IX (4 5)

It therefore follows that the functional derivative of w(x)
is given by

SW(X) N

swa) - o(x-X') (A 6)
Note the similarity to the usual result for partial differ-
entiation with respect to the independent variables wye.vp.

dw;
Bwg T oA a7

The usual rules of differentiation hold for func-
tional differentiation as well. Thus, if ¢ is a function
of a single argument, and if &' is its derivative with
respect to this argument, the chain rule holds in the fol-

lowing form.

@HLM ZP' $ ¥iw]

5 W(F) SW(R) (4 8)
The usual rule for the derivative of a product holds too,
5wc ) (l w3 \)f[_w]l <¥' Swik) + 5\./(-" (4 9)

Finally, functional differentiation commutes with
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integration over ¥ in the same way that partial differen-
tiation with respect to wy commutes with summation over the

index,



APPENDIX B
THE JOINT-GAUSSIAN RANDOM FIELD

A collection of N random variables Xle+Xy 1s said to
be distributed according to a joint-Gaussian law if the
probability density for the distribution is of the form

N
-4 Qf“fia("j'ﬂ-ﬁ M xg-<Xa))

PX,.. X)) = Congl.x @ (B 1)

where the constant is chosen so that P integrates to unity.

-0

-55 PCX, .. XW )X, .. dxy = | (B 2)

-

The matrix ajk may be taken to be symmetric.

Associated with this probability density there is a
characteristic function ﬂ(Yl..yN) from which the various
moments of the distribution are obtained by differentiation.

Blv. vy = < & FNN Y

And
oy > & ]
CRg, %0 % = (%) 0%, . 3%, d g0y (8%

In order to perform the integration required in
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equation (B 3) we assume that the matrix a is non-singular.
Let a™l be the inverse of a and det a its determinant. We may

then write the exponent appearing in (B 3) as follows.

Z Qé* (X ~ (Xg))(xf Rg)) =+ A Z\ X3 Yy

,, T 47

<-4 z ay, [_Za“(x, <x)- aY][SQ,., X XaW-iva] (B 5)

0’.:0
N ) N -

\EDNES SHA AL DI W J A
2% 4,8

We introduce a new set of variables given by
X; ’?Q{m()‘z‘o‘a))“ Ay (B 6)

The Jacobian of this transformation is

D(X,... X}  _ \
D(X,...xn)  det a (B 7)

Substituting the new variables into equation (B 3) with the
aid of equation (B 5) we find

A
Gt )= e 8 = é}:,a,, : Y

—

CO-\‘.’- -22 oog XO x’_ - (B 8)
§_§A.‘f o Ix, .. JX,

The remaining integral no longer depends on the y's. It is

thus simply a number and is evaluated merely by requiring
¢(O,O‘...,O)= | (B 9)

which follows from the normalization of the probability
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density P. The characteristic function @ is then given by

QTR -3 Rig G Y
DY, .. )= @ T 37HTEL AT A (B 10)

The matrix a~l may be evaluated in terms of the
second moments of the distribution by differentiating the
characteristic function twice and setting the y's to zero.

o &
2%, 9y ] = = X5 Xa)
§ r=0) (B 11)
= - <Xo)<X,t) - 0-5\1
Thus
Qg T K XY = KRR
(B 12)
= <(X¢ =AU X~ <R D
The characteristic function is therefore
4 LSRG Y= 3 B ARG M X g- KD Ty
¢(Y. Y‘): e" 3 '0 2 ot 0 "V oA (B 13)

A random field p(¥,Z) may be said to be distributed
according to a joint-Gaussian law if the values of p at any
N points in position-velocity space are jolnt-Gausslan. Let
us consider p(¥,Z) to be the limit of a sequence of functions

which are pilecewise continuous over small regions in posi-
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tion=-velocity space denoted by Aj- Let p(j) be the constant
value of p(¥,2) in cell j. The characteristic functional of
the Joint-Gaussian random field p is then given by

e_;sch,S)wc?,'i)a?ai S

dlwl= ¢

;o e Swi Bravaz
k] o,

)

= Ly o Sw&,c‘)a‘feé',...,sW(fr,%)a?.\é')

10520 4 By
>, A -4 ,;, - - s -A 4 B )+
iZ(%J)}Mx’,t»YA?-éZ(ﬁo)mﬁwmmm Wiy, 3)d Yd2 (B 14)
= L.\-V\ e_ 9 o8y ‘0‘ o4 Oy
fba'ao}

- - -a ™ - o A TEN - :._" R L
_ exS(m,e»vcr,a)dma— SRV, 2w W ) ard 23T a2

-
-

o SPmwe) a- 3K EN Tepwrwiedd(1) 4@)



APPENDIX C
NUMERICAL RESULIS

On the following three pages appear some of the
numerical results of the computation of % (k,t) as
described in chapter V. Since it is 1$1% which indicates
the growth of the clustering spectrum it 1s this function
which is tabulated tather than S . For the sake of com-
pleteness R(t) is tabulated too. As mentioned in thé text
the followling data correspond to a division of the range
of the time-like variable s into déne hundred equal incre-

ments,

The origin of time has been chosen to be the start of
the expansion. The data is tabulated in terms of dimension-

less variables

= 42V ndoo (C 1)

and

— _ = =

where FP(0) is the average density of matter at the initial
time, (the time at which R=1), and <z2Y 1is the average
square of the peculiar velocity at that time,
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T R() — l;bffc'.t)l -
k=00 | E=0,5 E=l.0 |

8.16x1071 [ 1.00x10*0 |1.00x10"° | 1.00x10™° | 1.00x10*0
1.15x10%0 | 1,26 1.08 1.06 1.01
1.53 1.52 1.27 1.20 1.03
2.10 1.88 1.6k 1.4 1.11
2.87 2.31 2.25 1.86 1.20
4.06 2,91 363k 2.58 1.41
5.143 3.53 4,75 3.48 1.66
7.48 4,38 7.13 4.93 2,07
1.01x10%L | 5,34 1.05x10*% | 6.90 2.62
1.40 6.65 1.61 1.01x10"t | 3,48
1.87 8.08 2.36 1.43 4,56
2.59 1.00x10%% | 3,63 2.12 6.27
3.39 1.20 5.18 2.93 8.27

5.05 1.56 8.80 4.79 1.27x10%1
7.09 1.96 1.38x10%2 | 7,27 1.8k
9.09 2.32 1.93 9.89 RN
1.19x10%2 | 2,78 2.76 1.38x10%2 | 3,34
1.61 3.39 k.11 2.00 L.72
2.24 k.23 6,40 3.02 6.96

3.26 5.2 1.05x10%3 | 4.79 1.08x10™2
4,00 6.22 1.38 6.16 1.38
6.3k 8.45 2, 1.48x10™3 | 3,22
1 8.2 11.00x10%2 | 3,99 2,08 L, 50
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. B, B)l 2
k=1,5 k=2.0 k=2,5 k=3,0

8.16x1071 | 1.00x10"0 |1.00x10™ | 1.00x10™ | 1.00x10"°

1.15x10"% | 9.22x107F | 8.43x1071 | 6.99x1071 | 5.79x1072

1.53 7.97 5.86 3.52 2.01

2.10 6.67 3.55 1.40 L,92x10"2

2.87 5.75 2.19 5.85x1072 | 1.36

4+.06 5.22 142 2.70 46103

5143 5.13 1.10 1.68 2.20

7.48 5.38 9.25%1072 | 1,16 1.19

1.01x10%L | 5,94 8.58 9.10x1073 | 7.68x10~*

1.40 6.98 8.52 7.71 5.35

1.87 8.37 8.97 7.18 4,29

2.59 1,06x10"0 | 9.99 7.1 3.71

3.39 1.32 1.13x10 % | 7.4y 3.51

5.05 1.90 1.L4 8.62 3.56

7.09 2.66 1.83 1.03x1072 | 3,90

9.09 ER 2.23 1.21 4.33

1.19x10%2 [ 4,61 2.80 1.48 5.00

1.61 RN 3.68 1.89 6.07

2.2k 9.4+ 5.05 2.56 7.79

3.26 1.47x10%0 | 734 3.69 1.07x1073

4,00 1.88 9.07 4,56 1.30

6.3k 3.31 1.95x10%° | 7.148 2.0k
{8.21 L, 57 2,65 1.00x107t 10,68




. 13, )l 2
k=3,5 k=l4,0 k=h.5 k=9,0
8.16x107F |1.00x10*0 |1.00x10"° |1.00x10*° |1.00x10*0
1.15x10*0 [L.62x1071 [3.57x10 | 2.66x1071 |1.92x1071
1.53 1.04x1071  [%,93x10™2 | 2,13x1072 | 8.45x10"3
2.10 1.49x1072 [4,01%10™> | 9.80x107* | 2.25x107*
2.87 27521073 | 5.04x10™" | 8.66x10™% | 1.%0x10"5
4,06 6.46x10™% |8.37x107% |9.71x1076 | 1.01x107
5.3 2.146 2.39 2,02 1.53x107
7.48 1.02 7.41x107° | . 70x1077 2.67x1078
1.01x10™t | 5.25x107% |3.07 1.56 7,01x10™9
1.40 3.00 1.L41 5.75x1078 " | 2.05
1.87 2.06 8.27x10~7 | 2,83 8.43x10710
2.59 1.53 5424 1.52 3.81
3.39 1.30 3.98 1.02 2.26
5.05 1.15 3.0k 6.70x10"7 | 1.26
7.09 1.1k 2.72 5.37 9.03x10™ L
9.09 1.19 2.65 4,88 7.63
1.19x102 }1.30 2.71 4.66 6.78
1.61 1.49 2.92 4,70 6140
2.24 1.81 3.35 5.07 6.47
3.26 2.37 b1k 5.92 7.09
4,00 2.79 4,76 6.62 7.70
6434 4,21 6.82 8.99 9.90
8.21 S,k 8,57 1.10x10°8 11.78%19710
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